
Benchmarking results of SMIP project software components

NAILabs

September 15, 2003

1 Introduction

As packets are processed by high-speed security gateways and firewall devices, it is critical
that system resources are optimized to allow for operation in a fast network. This paper outlines
some benchmarking tests performed on the components of the SMIP project[1] to measure their
efficiency in achieving this goal.

The machine used in calculating these benchmarks was a Dell Latitude CPx, with a 650 MHz
Pentium III, 256 MB of memory, running RedHat Linux 7.2, and using kernel version 2.4.18-3.
At the time of this writing, it is about 2 years old and is already significantly slower than more
modern systems.

Unless otherwise stated, all networking benchmarks were performed over the loop-back
interface to remove the real network specific dependencies from the results. All network
bandwidth calculations were done using the netperf[2] benchmarking tool testing maximum
transfer rates over a TCP connection.

The architectural components of the SMIP project are shown in Figure 1. An administrator
uses the management console to describe the required network policy which is then stored in
the management server’s database. The policy management engine then utilizes the SNMP
protocol to configure each of the network devices it is responsible for.

SNMP
INFORM

Policy Management Engine

Web Client

Web Server

HTTP/HTML

IPsec
Device

IPsec
Device

Managed
Devices

Management
Console

DataBase

SQL

Management
Server

SQL

SNMP

Figure 1: SMIP Project Architecture Components

1



2 Policy Enforcement Efficiency

At a Policy Enforcement Point (PEP), packets are processed and policy decisions are enforced
to ensure that the configured network policy is being met. PEPs are managed by the Policy
Management Engine and are a managed device specific to IPsec. Since PEPs are where
network traffic is affected directly by network policies, they are the most critical point for
optimization. Slow policy enforcement directly relates to the network bandwidth to and from
a given PEP.

Within the SMIP project, IPsec and network policy definitions are constructed using a series
of rules which are made up of filters and actions. These rules are then executed for each packet
traversing a PEP in an assigned and deterministic order such that rules with a higher priority
are always executed before rules with a lower priority. If all of the filters associated with a given
rule are evaluated positively, then the action for that rule is executed and the processing of the
network packet is finished. This decision making process is depicted in Figure 2. Since this
process is required for every packet passing through a PEP, it is critical that this be optimized
for performance. The critical elements of this process are: how fast the packets can be filtered
and how fast the actions can execute. For IPsec security gateways, this means the IPsec and
IKE specific actions must process IPsec and IKE actions as fast as possible.

Action
Needed?

Apply
Filters

Route
Packet

Perform
Action

Receive
Packet Packet

Deliver

Figure 2: PEP Packet Decision Process

2.1 Filter Processing

As packets traverse a PEP they will be subject to various types of packet filters as the policy
rules are evaluated. As the number of filters which must be processed per packet increase, the
amount of processing time required for each packet must also increase. The graphs in Figures
3 through 6 show that as more packet filters are needed, the processing speed of both installing
and applying those filters begins to consume more system resources.

For benchmarking purposes, all the filters in these tests were always evaluated to be false
so that processing of the test packets did not stop before reaching the final filter. I.E., every filter
was applied to every network packet for the test. This was done to test the speed at which a
large number of filters could be evaluated.

It should be noted that in a real world scenario, it is highly unlikely that such a large number
of filters would need to be processed for any given packet. The SMIP architecture, as well as
most firewall filter processing engines including the one used within the Linux kernel, allows
for the creation of decision trees which makes processing of all the filters in a large collection
unnecessary. As an example, if you needed to compare a network packet against a list of 10,000

2



different IP addresses, you could optimize your performance by grouping your filters together by
subnets so that only a subset of the entire collection of filters will be evaluated for any filter falling
into the containing subnet.

These figures show which filters are more expensive than others. This helps in defining
proper processing ordering of filters such that the faster filters are executed first. Additionally,
they show that all of the filters are quite fast. The application of 100 of the slowest filters will
still leave the machine able to process packets at a fast enough rate to handle a 1 Gb network
interface (even on the two year old machine used for these tests).

The filters which are slightly slower within these graphs are ones that require external
processing functions in order to evaluate the given packet. Filters such as the source address
filter, for example, are handled directly and internally by the Linux packet filtering system.
However, filters such as the IP-range filter are Linux iptables plugin-filters which are distributed
with the SMIP project software. They require slightly more memory and some additional function
calls and are thus slightly slower. The graphs show that even these externally defined filters,
however, are extremely fast.

Some filters, not yet available for testing at the time of these benchmarks, are expected to be
significantly slower. IKE credential checks, for example, will make use of public-key cryptography
authentication tests. The speed of these filters will be evaluated in the last portion of the SMIP
project.

3



0

20

40

60

80

100

120

140

160

0 1000 2000 3000 4000 5000

se
co

nd
s

number of filters

filter list creation time -- linear

Source Address
Protocol

Protocol and Port
Interface

Packet Offset 28
Packet Offset 30

IP Address Range

Figure 3: Filter insertion processing speed – linear scale

0

20

40

60

80

100

120

140

160

1 10 100 1000 5000

se
co

nd
s

number of filters

filter list creation time -- logarithmic

Source Address
Protocol

Protocol and Port
Interface

Packet Offset 28
Packet Offset 30

IP Address Range

Figure 4: Filter insertion processing speed – logarithmic scale

4



0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1000 2000 3000 4000 5000

M
b/

s

number of filters

network speed -- linear

Source Address
Protocol

Protocol and Port
Interface

Packet Offset 28
Packet Offset 30

IP Address Range

Figure 5: Filter processing and its effect on network speed – linear scale

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 10 100 1000 5000

M
b/

s

number of filters

network speed --logarithmic

Source Address
Protocol

Protocol and Port
Interface

Packet Offset 28
Packet offset 30

IP Address Range

Figure 6: Filter processing and its effect on network speed – logarithmic scale

5



2.2 Action Processing

A few types of actions can be performed on packets traversing a PEP. Accepting and dropping
actions are simple and require no benchmarking as they are effectively instantaneous. Packets
can also trigger IPsec and IKE related actions. The IPsec actions fall into three categories:
protecting traffic using existing IPsec Security Associations, bringing new statically configured
Security Associations on-line and negotiating security association keying material and other
parameters using the IKE negotiation service.

2.2.1 SADB Benchmarks

SADB lookups occur within a IPsec-enabled device to determine if any incoming or outgoing
packet matches an existing IPsec Security Association and therefore must be processed by
IPsec security transformations. The SADB is functionally a database of existing Security
Association parameters within a device. It is critical that the SADB be as efficient as possible
since every IPsec protected packet traversing a device will result in a SADB consultation.

The graphs shown in Figures 7 and 8 show the processing speed of SADB database
insertions and the packet processing as affected by the number of entries stored in the SADB
database.

These graphs are for the default programming methodologies of the Cerberus[3] package.
It is likely that for systems requiring a huge number of connections, the code can be optimized
so that the hash-table based lookups achieve even greater performance at the cost of memory
utilization. Even with the default parameters in place, the graphs show that the SADB database
implementation with Cerberus is extremely efficient.

6



0

200

400

600

800

1000

1200

1 10 100 1000 10000 100000

se
co

nd
s

number of SADB entries

SADB creation time

sadb add time

Figure 7: sadb insertion processing speed

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

1 10 100 1000 10000 100000

M
b/

s

number of SADB entries

SADB effect on network speed

sadb speed

Figure 8: sadb processing and its effect on network speed

7



2.2.2 IPsec Encryption and Authentication Algorithm Efficiency

Table 1 shows the network performance of two machines conversing over an IPsec protected
SA under various authentication and encryption algorithms. For these tests, the test laptop
communicated with a much faster server over a 100Mb/s network link. Effective bandwidth was
then measured between these two machines for every combination of IPsec authentication and
encryption algorithms. The results are listed as a percentage of the baseline rate which had no
intervening IPsec connection in use. Table 1 shows the results of this analysis.

Authentication Algorithm
Encryption Algorithm None HMAC-MD5-96 HMAC-SHA-96
None 100 76 65
DES/CBC 51 47 43
3DES/CBC 34 32 30
AES/128 47 44 38
IDEA/CBC 50 45 41
RC5/CBC 62 53 49
Blowfish/CBC 51 47 42

Table 1: Throughput percentage of SA Algorithm Efficiency

It is clear from the results in Table 1 that protecting traffic using authentication and/or
encryption requires significant computational overhead. Authentication alone requires
significant computation and reduced the effective throughput of the test laptop to 65-76 percent
of it’s original capacity depending on the algorithm used. The 3DES encryption algorithm is
known to be one of the slowest and most computational encryption algorithms available to
date. The data in this table shows this belief to be valid, as the network bandwidth dropped
to 34 percent of the original speed even without authentication enabled. The worst performance
occurs when using 3DES as an encryption algorithm and HMAC-SHA-96 as a authentication
algorithm, which reduced the throughput to 30 percent of it’s original potential.

It is clear from this data that protecting all traffic to and from heavily-utilized systems with
both authentication and encryption will reduce the usefulness and effective bandwidth of that
system. The SMIP project, with its rule-based policy architecture, solves this problem by
allowing networks to be configured to only protect traffic when appropriate. Decisions can be
made to use slower, but possibly more trusted algorithms, only when needed.

2.2.3 IKE Key Negotiation Efficiency

The IKE service, which negotiates dynamic keys for the IPsec protocol, also consumes
resources. With statically configured IKE keys, IKE took 428 milliseconds to negotiate and
configure an IPsec SA. With an RSA signature based identity in use, IKE required 1.8 seconds to
configure an IPsec SA. This indicates that IKE negotiation also consumes significant resources
on a system. IKE negotiations should only be used when needed. It should not be used to
configure IPsec SAs which will not be used or for traffic which does not require protection.

On high-speed, heavily-utilized systems, IKE should be used only when IKE key negotiation
is required. This is especially true when security polices require rapidly changing keys, as the
overhead of frequent IKE transactions will quickly add up. If every device in a network had an
always-up policy for IPsec connections and these connections were to be established using IKE,
the network systems would spend far too much time performing keying negotiations which may

8



not be necessary or utilized. Because of the high cost of IKE-based key negotiation, a high
volume gateway should not keep all its IKE derived IPsec connections open at all times. The
SMIP project’s policy-based decision architecture allows IKE negotiations to be used only when
needed which will reduce the overhead resources consumed by a PEP.

3 Management Efficiency

In order for PEPs to make decisions on network packets that arrive at each network node,
they must be first configured with the policies to enforce. The SMIP Policy Management Servers
must be able to configure as many PEPs as possible in a given period of time. The management
architecture of the SMIP project is depicted in Figure 9. Although the speed of policy distribution
is not as critical as the rate at which PEPs can process individual packets when applying the
policies, it is still important that policy distribution speed is optimized as much as possible. A
change in network policy will not have full effect until it is distributed to all the PEPs that must
enforce it.

IPsec
Device

SNMP
Services

IKE
Services

IPsec
Services

SNMP
Services

IKE
Services

IPsec
Services

IPsec
Device

Policy
Management

SNMP

System

Figure 9: Management Architecture

There are two elements that effect how long it will take to configure a collection of PEPs
across a network. The first element is the rate at which the PEPs themselves can accept
management operations within the SNMP agent. The second is the rate at which the policy
management servers can distribute policies to the PEPs.

3.1 SNMP Agent Efficiency

Figure 10 shows the time needed to configure a fixed number of filters and actions through the
SNMP protocol. Figure 11 shows the time needed to retrieve the list of currently configured
filters and actions through the SNMP protocol (using the least efficient SNMP method of data

9



retrieval). All of the SNMP transactions were performed with secure authentication enabled
within the SNMPv3 protocol.

These graphs show that manipulating data within the PEPs via SNMP is fairly efficient. A
large number of policy components can be inserted quickly into a running system. The speed
discrepancy between the performance of filters and actions is the result of how much kernel
interaction must be performed. The filters are implemented with the firewall handling rules in the
Linux kernel, but the actions are implemented directly in the user-space level PlutoPlus agent.

It is important to note that the CVS head branch of the Net-SNMP package (targeting a
Net-SNMP 5.1 release) contains a few speed improvements which will drastically improve these
benchmarks. These benchmarks, however, were not performed against an agent constructed
using the new technology not available yet in a public Net-SNMP release.

10



0

2

4

6

8

10

12

0 50 100 150 200 250 300 350 400 450 500

se
co

nd
s

number of configuration items

SNMP agent write performance

actions
filters

Figure 10: Time required to perform configurations via SNMP

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300 350 400 450 500

se
co

nd
s

number of configuration items

SNMP agent read performance

actions
filters

Figure 11: Time required to request current configuration via SNMP

11



3.2 Policy Management Server Efficiency

The SMIP architecture contains one or more policy management servers which are responsible
for configuring a network with an administratively defined policy. At the time of this writing, the
policy management engine is single-threaded and has not been optimized for performance.

Right now, the policy management server can configure a client on the same machine, over
the loop-back interface, with the data needed to implement an IPsec SA with pre-configured
static keys in approximately 345 milliseconds. The operations required for this configuration
set amounted to inserting 11 rows of data into 11 SNMP tables. A large portion of this time
(140 milliseconds) was spent performing a one time initialization. This was needed since the
policy management server had never contacted the host in question before. On average, after
initialization, a single SNMP table row can be distributed from the policy management server in
under 10 milliseconds.

Because of the reuse features designed into the SMIP architecture, it should be possible
to build a second SA to a different host in merely 2 additional SNMP table rows (requiring
approximately only 12 milliseconds to distribute). This can be done, for example, if the same
secret keys were to be used in a second policy thus eliminating the need for retransmission of
the keying data. Nearly everything within the SMIP architecture is reusable in this way. Because
the SMIP architecture allows for a lot of data re-use, the amount of data needed to instrument a
network policy will vary depending on its re-usability as well as its complexity.

3.2.1 Policy Management Server Database Efficiency

The SMIP architecture makes heave use of a SQL database for storage of policy definitions.
The database architecture has proven to be well designed for speed. Adding 10000
otherwise-unused rows of data into some of the database tables used by the policy management
engine had no measurable effect on the management’s performance. There are likely to
be certain conditions where database access will actually slow down the policy management
server’s performance but none of these conditions have been found yet. Further study about
these possible bottlenecks might be undertaken in the future.

4 Conclusions

Many of the SMIP architecture components are fairly well optimized already but some of the
components do still need more optimizing. A few remaining components, in particular the policy
management server, need more performance analysis and speed optimizations.

12



References

[1] Network Associates Laboratories. A Scalable IPsec Policy Configuration System.
November 2001.

[2] Hewlett-Packard’s NetPERF network benchmarking tool.
http://www.cup.hp.com/netperf/NetperfPage.html.

[3] NIST Cerberus: An IPsec reference implementation for Linux.
http://www.antd.nist.gov/itg/cerberus/.

13


